2,063 research outputs found

    Biomechanical study of the funnel technique applied in thoracic pedicle screw replacement

    Get PDF
    Background: Funnel technique is a method used for the insertion of screw into thoracic pedicle.Aim: To evaluate the biomechanical characteristics of thoracic pedicle screw placement using the Funnel technique, trying to provide biomechanical basis for clinical application of this technology.Methods: 14 functional spinal units (T6 to T10) were selected from thoracic spine specimens of 14 fresh adult cadavers, and randomly divided into two groups, including Funnel technique group (n=7) and Magerl technique group (n=7). The displacement-stiffness and pull-out strength in all kinds of position were tested and compared.Results: Two fixed groups were significantly higher than that of the intact state (P<0.05) in the spinal central axial direction, compression, anterior flexion, posterior bending, lateral bending, axial torsion, but there were no significant differences between two fixed groups (P>0.05). The mean pull-out strength in Funnel technique group (789.09±27.33) was lower than that in Magerl technique group (P<0.05).Conclusions: The Funnel technique for the insertion point of posterior bone is a safe and accurate technique for pedicle screw placement. It exhibited no effects on the stiffness of spinal column, but decreased the pull-out strength of pedicle screw. Therefore, the funnel technique in the thoracic spine affords an alternative for the standard screw placement.Keywords: Thoracic; Pedicle screws; Biomechanics; Funnel techniqu

    Minimal set of generators of controllability space for singular linear dynamical systems

    Get PDF
    Due to the significant role played by singular systems in the form E ¿ x ( t ) = Ax ( t ) , on mathematical modeling of science and engineering problems; in the last years recent years its interest in the descriptive analysis of its structural and dynamic properties. However, much less effort has been devoted to studying the exact con- trollability by measuring the minimum set of controls needed to direct the entire system E ¿ x ( t ) = Ax ( t ) to any desired state. In this work, we focus the study on obtaining the set of all matrices B with a minimal number of columns, by making the singular system E ¿ x ( t ) = Ax ( t ) + Bu ( t ) controllable.Postprint (author's final draft

    Interface dynamics in Hele-Shaw flows with centrifugal forces. Preventing cusp singularities with rotation

    Get PDF
    A class of exact solutions of Hele-Shaw flows without surface tension in a rotating cell is reported. We show that the interplay between injection and rotation modifies drastically the scenario of formation of finite-time cusp singularities. For a subclass of solutions, we show that, for any given initial condition, there exists a critical rotation rate above which cusp formation is prevented. We also find an exact sufficient condition to avoid cusps simultaneously for all initial conditions. This condition admits a simple interpretation related to the linear stability problem.Comment: 4 pages, 2 figure

    Relativistic X-Ray Reverberation from Super-Eddington Accretion Flow

    Get PDF
    X-ray reverberation is a powerful technique which maps out the structure of the inner regions of accretion disks around black holes using the echoes of the coronal emission reflected by the disk. While the theory of X-ray reverberation has been developed almost exclusively for standard thin disks, recently reverberation lags have been observed from likely super-Eddington accretion sources such as the jetted tidal disruption event Swift J1644+57. In this paper, we extend X-ray reverberation studies into the super-Eddington accretion regime, focusing on investigating the lags in the Fe K{\alpha} line region. We find that the coronal photons are mostly reflected by the fast and optically thick winds launched from super-Eddington accretion flow, and this funnel-like reflection geometry produces lag-frequency and lag-energy spectra with unique characteristics. The lag-frequency spectra exhibits a step-function like decline near the first zero-crossing point. As a result, the shape of the lag-energy spectra remains almost independent of the choice of frequency bands and linearly scales with the black hole mass for a large range of parameter spaces. Not only can these morphological differences be used to distinguish super-Eddington accretion systems from sub-Eddington systems, they are also key for constraining the reflection geometry and extracting parameters from the observed lags. When explaining the X-ray reverberation lags of Swift J1644+57, we find that the super-Eddington disk geometry is preferred over the thin disk, for which we obtain a black hole mass of 5-6 million solar masses and a coronal height around 10 gravitational radii by fitting the lag spectra to our modeling

    Shotgun proteomics: Tools for analysis of marine particulate proteins

    Get PDF
    National Natural Science Foundation of China [40821063, 40376032, 40476053]; Ministry of Science and Technology [2008DF100440]; Program for New Century Excellent Talents in Xiamen UniversityThis study sought a high resolution and high-throughput method to identify and characterize proteins from marine particulate organic matter (POM) using proteomic approaches. The results showed that only a limited number of discrete protein spots were distinguished using two-dimensional electrophoresis (2-DE). Most protein spots were faint and small in 2-DE gels, with a heavy unresolved smeared staining background, indicating 2-DE was not a good high resolution method to separate particulate proteins for identification and characterization. The shotgun proteomic approach combining one-dimensional electrophoresis and capillary liquid chromatography-tandem mass spectrometry as well as the NCBI protein database search was successfully applied to identify and characterize particulate proteins. Using this approach, 737 proteins matching one or more peptides were detected in a POM sample collected from the 41 m water layer in the basin area of the western South China Sea. Of these, 184 were identified as high-confidence proteins matching two or more peptides, including photosynthetic proteins, transporters, molecular chaperones, and porins. In addition to these proteins with known functions, a significant number of novel proteins (accounting for similar to 30% of the proteins identified) were also detected. The identification of a large number of high-confidence proteins in the POM sample demonstrated that the shotgun proteomic approach is reliable and feasible for the study of particulate proteins and will provide a powerful tool to comprehensively investigate the nature and dynamics of POM in the ocean

    An approach for the calculation of one-loop effective actions, vacuum energies, and spectral counting functions

    Full text link
    In this paper, we provide an approach for the calculation of one-loop effective actions, vacuum energies, and spectral counting functions and discuss the application of this approach in some physical problems. Concretely, we construct the equations for these three quantities; this allows us to achieve them by directly solving equations. In order to construct the equations, we introduce shifted local one-loop effective actions, shifted local vacuum energies, and local spectral counting functions. We solve the equations of one-loop effective actions, vacuum energies, and spectral counting functions for free massive scalar fields in Rn\mathbb{R}^{n}, scalar fields in three-dimensional hyperbolic space H3H_{3} (the Euclidean Anti-de Sitter space AdS3AdS_{3}), in H3/ZH_{3}/Z (the geometry of the Euclidean BTZ black hole), and in S1S^{1}, and the Higgs model in a (1+1)(1+1)-dimensional finite interval. Moreover, in the above cases, we also calculate the spectra from the counting functions. Besides exact solutions, we give a general discussion on approximate solutions and construct the general series expansion for one-loop effective actions, vacuum energies, and spectral counting functions. In doing this, we encounter divergences. In order to remove the divergences, renormalization procedures are used. In this approach, these three physical quantities are regarded as spectral functions in the spectral problem.Comment: 37 pages, no figure. This is an enlarged and improved version of the paper published in JHE

    Mitochondrial DNA Copy Number Is Associated with Breast Cancer Risk

    Get PDF
    Mitochondrial DNA (mtDNA) copy number in peripheral blood is associated with increased risk of several cancers. However, data from prospective studies on mtDNA copy number and breast cancer risk are lacking. We evaluated the association between mtDNA copy number in peripheral blood and breast cancer risk in a nested case-control study of 183 breast cancer cases with pre-diagnostic blood samples and 529 individually matched controls among participants of the Singapore Chinese Health Study. The mtDNA copy number was measured using real time PCR. Conditional logistic regression analyses showed that there was an overall positive association between mtDNA copy number and breast cancer risk (Ptrend = 0.01). The elevated risk for higher mtDNA copy numbers was primarily seen for women with <3 years between blood draw and cancer diagnosis; ORs (95% CIs) for 2nd, 3rd, 4th, and 5th quintile of mtDNA copy number were 1.52 (0.61, 3.82), 2.52 (1.03, 6.12), 3.12 (1.31, 7.43), and 3.06 (1.25, 7.47), respectively, compared with the 1st quintile (Ptrend = 0.004). There was no association between mtDNA copy number and breast cancer risk among women who donated a blood sample ≥3 years before breast cancer diagnosis (Ptrend = 0.41). This study supports a prospective association between increased mtDNA copy number and breast cancer risk that is dependent on the time interval between blood collection and breast cancer diagnosis. Future studies are warranted to confirm these findings and to elucidate the biological role of mtDNA copy number in breast cancer risk. © 2013 Thyagarajan et al

    Survival enhancing indications for coronary artery bypass graft surgery in California

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Coronary artery bypass graft (CABG) surgery is performed because of anticipated survival benefit, improvement in quality of life, or both. We performed this study to explore variations in clinical indications for CABG surgery among California hospitals and surgeons.</p> <p>Methods</p> <p>Using California CABG Outcomes Reporting Program data, we classified all isolated CABG cases in 2003–2004 as having "probable survival enhancing indications (SEIs)", "possible SEIs" or "non-SEIs." Patient and hospital characteristics associated with SEIs were examined.</p> <p>Results</p> <p>While 82.9% of CABG were performed for probable SEIs, the range extended from 68% to 96% among hospitals and 51% to 100% among surgeons. SEI rates were higher among patients aged ≥ 65 compared with those aged 18–64 (Adjusted Odds Ratio [AOR] > 1.29 for age groups 65–69, 70–74 and ≥ 75; all p < 0.001), among Asians and Native Americans compared with Caucasians (AOR 1.22 and 1.15, p < 0.001); and among patients with hypertension, peripheral vascular disease, diabetes, cerebrovascular disease and congestive heart failure compared to patients without these conditions (AOR > 1.09, all p < 0.001). Variations in indications for surgery were more strongly related to patient mix than to surgeon or hospital effects (intraclass correlation [ICC] = 0.04 for hospital; ICC = 0.01 for surgeon).</p> <p>Conclusion</p> <p>California hospitals and surgeons vary in their distribution of indications for CABG surgery. Further research is required to identify the roles of market factors, referral patterns, patient preferences, and local clinical culture in producing the observed variations.</p

    Cancer incidence in the population exposed to dioxin after the "Seveso accident": twenty years of follow-up

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Seveso, Italy accident in 1976 caused the contamination of a large population by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Possible long-term effects have been examined through mortality and cancer incidence studies. We have updated the cancer incidence study which now covers the period 1977-96.</p> <p>Methods</p> <p>The study population includes subjects resident at the time of the accident in three contaminated zones with decreasing TCDD soil levels (zone A, very high; zone B, high; zone R, low) and in a surrounding non-contaminated reference territory. Gender-, age-, and period-adjusted rate ratios (RR) and 95% confidence intervals (95% CI) were calculated by using Poisson regression for subjects aged 0-74 years.</p> <p>Results</p> <p>All cancer incidence did not differ from expectations in any of the contaminated zones. An excess of lymphatic and hematopoietic tissue neoplasms was observed in zones A (four cases; RR, 1.39; 95% CI, 0.52-3.71) and B (29 cases; RR, 1.56; 95% CI, 1.07-2.27) consistent with the findings of the concurrent mortality study. An increased risk of breast cancer was detected in zone A females after 15 years since the accident (five cases, RR, 2.57; 95% CI, 1.07-6.20). No cases of soft tissue sarcomas occurred in the most exposed zones (A and B, 1.17 expected). No cancer cases were observed among subjects diagnosed with chloracne early after the accident.</p> <p>Conclusion</p> <p>The extension of the Seveso cancer incidence study confirmed an excess risk of lymphatic and hematopoietic tissue neoplasms in the most exposed zones. No clear pattern by time since the accident and zones was evident partly because of the low number of cases. The elevated risk of breast cancer in zone A females after 15 years since the accident deserves further and thorough investigation. The follow-up is continuing in order to cover the long time period (even decades) usually elapsing from exposure to carcinogenic chemicals and disease occurrence.</p

    Structural and doping effects in the half-metallic double perovskite A2A_2CrWO6_6

    Full text link
    he structural, transport, magnetic and optical properties of the double perovskite A2A_2CrWO6_6 with A=Sr, Ba, CaA=\text{Sr, Ba, Ca} have been studied. By varying the alkaline earth ion on the AA site, the influence of steric effects on the Curie temperature TCT_C and the saturation magnetization has been determined. A maximum TC=458T_C=458 K was found for Sr2_2CrWO6_6 having an almost undistorted perovskite structure with a tolerance factor f1f\simeq 1. For Ca2_2CrWO6_6 and Ba2_2CrWO6_6 structural changes result in a strong reduction of TCT_C. Our study strongly suggests that for the double perovskites in general an optimum TCT_C is achieved only for f1f \simeq 1, that is, for an undistorted perovskite structure. Electron doping in Sr2_2CrWO6_6 by a partial substitution of Sr2+^{2+} by La3+^{3+} was found to reduce both TCT_C and the saturation magnetization MsM_s. The reduction of MsM_s could be attributed both to band structure effects and the Cr/W antisites induced by doping. Band structure calculations for Sr2_2CrWO6_6 predict an energy gap in the spin-up band, but a finite density of states for the spin-down band. The predictions of the band structure calculation are consistent with our optical measurements. Our experimental results support the presence of a kinetic energy driven mechanism in A2A_2CrWO6_6, where ferromagnetism is stabilized by a hybridization of states of the nonmagnetic W-site positioned in between the high spin Cr-sites.Comment: 14 pages, 10 figure
    corecore